IoT Insights for Sustainable Regional Agribusiness: GovHack 2021


Everyone knows about Australia’s world leading #agriculture exports. But lesser known is the potential of the #agtech (#agriculturetechnology ) potential to bring more sustainable, scalable, relevant food and resources to the world! AgTech a is more scalable export, and less dependant on the size of population or your geographical location, which puts us clever Aussies at a huge advantage. It’s more sustainable and economic to ship software around than fresh produce or livestock!

With the increased prevalence of droughts, natural disasters, harmful pests, and climate change, it has never been more important to innovate for sustainable and resilient farming practices. Environmentally friendly techniques and technology are the key to meeting the food demand with right nutrition for consumers.

That’s why Telstra and Microsoft came together at GovHack 2021 to challenge the hackathon participants to think of ways to IoT insights for better regional agribusiness at scale. See the full challenge breakdown here on GovHack.

We asked them:

How might we harness open data and IoT insights in near-real-time to enable local agribusiness and farms in our regions be more productive and sustainable at scale? How can we share private IoT data and regional open data for an overall more productive and sustainable agribusiness?

And here are some of our favourite entries from the GovHack 2021 participants!

You can read more about each entry below.

You can see that most have a focus on rural farming, which highlights the need for digital inclusion in our vulnerable regional communities. In these areas, coverage across the whole property can be a challenge, which is why the Narrow Band Internet of Things (NB-IoT) network comes in handy. Telstra’s NB-IoT network has been globally recognised for its coverage capability up to 120km from the nearest mobile tower, covering ~ 4 million square kilometres in Australia.

To set the 2021 GovHack-ers up for this challenge, Michelle from Telstra and Valeria from Microsoft shared a pre-hack workshop introduction to cellular IoT networks and visualisation tools with Azure that can be used to unlock all the useful data that you can pull from your IoT devices. Catch the replay here.

Last year at GovHack 2021 TelstraDev ran a workshop with our Messaging API (catch the replay here) and we had great submissions to our Communications in a Crisis and IoT insights challenges last year.

Now for a summary of our favourite 2021 submissions to the Telstra x Microsoft challenge:

Cow in Love

They used Artificial Intelligence (AI) to scan video and images of cattle to predict whether they are “on heat” or not and send the farmer an SMS! Cows are usually only fertile and ready to make calves for a short period!

The system uses a trained model over previous images to recognize the patterns inside the new query image for classification. The cameras are solar powered and connected over Telstra’s NB-IoT network. For the SMS they could use the Telstra Messaging API.

We thought it has the potential to seriously help farmers manage the difficult dependencies on cattle fertility. There has been a lot of research in this area over the past few years and seeing IoT sensors user to infer when and which cows are on heat are increasingly popular. This solution took it to the next step by leveraging AI and ML (Machine Learning) so human monitoring is not required. This speeds up the process, reduces the risk of human error, and allows farms to utilise labour in other areas.

I think we’ve seen something similar at a previous Telstra Innovation Hackathon! Must mean it’s still a gap in the market. To take it to the next level we’d love to see how the video analytics can be paired with other IoT sensors like temperature.

Get more from less

Get more of a yield, from less land, water, energy and pesticides! This solution combined open source weather data, manual sensor input from things like crop yield and site management, as well as static and dynamic data from sensors on site. They propose to use AI to predict crop yield and recommend certain actions for the farm hands to get greater yield with optimised resource allocation.

The Telstra and Microsoft judges liked how they demonstrated this technology would work on a single farm, but could also expand to a collection of farms within a local region. This really addressed our challenge brief of sustainable agri-tech at scale.

Digital Regenerative Farming

This team took the challenge of more sustainable farming into the practice of farming itself.

When addressing the impacts of climate change, 2 key strategies are prevention and mitigation.

Carbon capture or sequestration is when CO2 from the atmosphere, usually a gas, can be trapped in solid form as Carbon. This is a form of mitigation, to reduce existing pollution.

We want to see more of this in agriculture, but it’s traditionally hard to actually measure and reward.

This team has compared the limitations of existing carbon sensors, and provided a new alternative to measure and reward carbon capture. They proposed to partner with establish Aussie AgTech robotics company: Agerris, who was featured on the AgTech session of our monthly AusIoT meetup. The live data collected from the roaming robots would be sent via Telstra’s NB-IoT network to an model in the Azure IoT cloud. If you want to test out this network yourself, you can grab a trial SIM and an Arduino MKR NB 1500, I’ve done some tutorials to show you how to get started with Arduino for IoT on TelstraDev.

This project shows a practical solution to support the carbon reduction incentive program which will be rolled out by more and more countries in the next 5-10 years. They’ve considered public and private partnerships that can make it happen, including using UN open data, and who the end users of that data could be, e.g carbon credit aggregators.

To take it to the next level we’d love to see how this data can be fed into the Telstra Data Hub. If more institutes had secure access to the carbon capture data, it will be a powerful solution for climate change mitigation!


Combining crowd sourced data on frog sightings from the New South Wales community, along with other open source data and well placed IoT sensors, Frogly is an interactive map that tracks the environmental health in key areas of the city. It infers that an ecosystem that attracts wildlife is a health one! They hope to use this data to support development of green spaces.

Many citizens already use local data from environmental sensors to keep track of their local indicators, but this was an interesting extrapolation to city-wide IoT by engaging the community in the data collection and creating civic ownership.


A very relevant solution to tracking such an important asset: Water! Developerd in consultation with farmers, they’ve tackled a problem that Telstra and Microsoft have heard time and time again from public, private and community groups. Here we see a solution that asks farmers to input their water usage, paired with some existing data sets and derives insights from that, considering both environmental and regulatory factors, in an easy to consume app.

We’d love to see how this can be applied to the Murray-Darling River at scale, to increase the accountability and awareness of up and down stream impacts on water usage in the basin.

Internet Of Ag

Moreton Bay is already very hooked into the Internet of Things, so this group paired the existing sensors with open weather data in an app to easily tell local farmers what they need to know. Whether it’s warning for a pending bushfire, or heavy rains, and also does some predictive modelling on the impact of crop yield and revenue for both domestic and exportation.

It was one of the most mature and achievable solutions we saw over the hackathon weekend, which demonstrated value to the end user but also the ecosystem of the region more broadly.


The Lone Alpaca single-handedly put together this solution to measure the suitability of vegetation in an area for grazing, using computer vision for farmers to work out where to move their cattle next.

They used images from Google to train the model as well open data on financial performance of livestock farms, to get cattle station size and location which was crucial for defining the project.

They’ve proposed an array of sensors, attached to an Arduino board in the field, that use computer vision to evaluate the quality of the grass. Is it good, feedable grass? Too dry? Or just good enough to eat? They don’t just show you image by image, but map that to a readable colour coded map.

We loved that they managed to train a working model over the weekend!

#iot #arduino #hackathon #agriculture #agtech #microsoft #telstra

Originally published on TelstraDev:

Link to original blog post: